Deletion of the Small RNA Chaperone Protein Hfq down Regulates Genes Related to Virulence and Confers Protection against Wild-Type Brucella Challenge in Mice
نویسندگان
چکیده
Brucellosis is one of the most common zoonotic epidemics worldwide. Brucella, the etiological pathogen of brucellosis, has unique virulence characteristics, including the ability to survive within the host cell. Hfq is a bacterial chaperone protein that is involved in the survival of the pathogen under stress conditions. Moreover, hfq affects the expression of a large number of target genes. In the present study, we characterized the expression and regulatory patterns of the target genes of Hfq during brucellosis. The results revealed that hfq expression is highly induced in macrophages at the early infection stage and at the late stage of mouse infection. Several genes related to virulence, including omp25, omp31, vjbR, htrA, gntR, and dnaK, were found to be regulated by hfq during infection in BALB/c mice. Gene expression and cytokine secretion analysis revealed that an hfq-deletion mutant induced different cytokine profiles compared with that induced by 16M. Infection with the hfq-deletion mutant induced protective immune responses against 16M challenge. Together, these results suggest that hfq is induced during infection and its deletion results in significant attenuation which affects the host immune response caused by Brucella infection. By regulating genes related to virulence, hfq promotes the virulence of Brucella. The unique characteristics of the hfq-deletion mutant, including its decreased virulence and the ability to induce protective immune response upon infection, suggest that it represents an attractive candidate for the design of a live attenuated vaccine against Brucella.
منابع مشابه
Salmonella enterica Serovar Typhimurium Lacking hfq Gene Confers Protective Immunity against Murine Typhoid
Salmonella enterica is an important enteric pathogen and its various serovars are involved in causing both systemic and intestinal diseases in humans and domestic animals. The emergence of multidrug-resistant strains of Salmonella leading to increased morbidity and mortality has further complicated its management. Live attenuated vaccines have been proven superior over killed or subunit vaccine...
متن کاملImpact of the RNA chaperone Hfq on multidrug resistance in Escherichia coli.
OBJECTIVES Hfq is a bacterial RNA chaperone involved in the post-transcriptional regulation of many stress-inducible genes via small non-coding RNAs. Although Hfq is related to important phenotypes including virulence in many bacterial pathogens, its role in drug resistance is unknown. The aim of this study was to investigate the role of Hfq in bacterial multidrug resistance. METHODS The hfq ...
متن کاملHfq Is a Global Regulator That Controls the Pathogenicity of Staphylococcus aureus
The Hfq protein is reported to be an RNA chaperone, which is involved in the stress response and the virulence of several pathogens. In E. coli, Hfq can mediate the interaction between some sRNAs and their target mRNAs. But it is controversial whether Hfq plays an important role in S. aureus. In this study, we found that the deletion of hfq gene in S. aureus 8325-4 can increase the surface caro...
متن کاملThe RNA chaperone Hfq independently coordinates expression of the VirB type IV secretion system and the LuxR-type regulator BabR in Brucella abortus 2308.
The type IV secretion system encoded by the virB operon is required for full virulence of Brucella sp., and the present study links the RNA chaperone Hfq to wild-type expression of virB in Brucella abortus 2308. Studies employing virB-lacZ fusions, quantitative reverse transcription-PCR, and immunoblot analysis showed that both transcription and translation of virB are decreased in an isogenic ...
متن کاملDeletion of znuA virulence factor attenuates Brucella abortus and confers protection against wild-type challenge.
znuA is known to be an important factor for survival and normal growth under low Zn(2+) concentrations for Escherichia coli, Haemophilus spp., Neisseria gonorrhoeae, and Pasteurella multocida. We hypothesized that the znuA gene present in Brucella melitensis 16 M would be similar to znuA in B. abortus and questioned whether it may also be an important factor for growth and virulence of Brucella...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2015